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S. Crépé-Renaudin n, D. Cutts bz, M. Ćwiok ad, H. da Motta b, A. Das bk, M. Das bi, B. Davies aq,
G. Davies ar, G.A. Davis bb, K. De ca, P. de Jong ah, S.J. de Jong ai, E. De La Cruz-Burelo bm,

C. De Oliveira Martins c, J.D. Degenhardt bm, F. Déliot r, M. Demarteau ay, R. Demina bt, P. Demine r,
D. Denisov ay, S.P. Denisov am, S. Desai bu, H.T. Diehl ay, M. Diesburg ay, M. Doidge aq,

A. Dominguez bp, H. Dong bu, L.V. Dudko al, L. Duflot p, S.R. Dugad ac, A. Duperrin o, J. Dyer bn,
A. Dyshkant ba, M. Eads bp, D. Edmunds bn, T. Edwards as, J. Ellison aw, J. Elmsheuser y,

V.D. Elvira ay, S. Eno bj, P. Ermolov al, J. Estrada ay, H. Evans bc, A. Evdokimov ak,
V.N. Evdokimov am, S.N. Fatakia bk, L. Feligioni bk, A.V. Ferapontov bh, T. Ferbel bt, F. Fiedler y,
F. Filthaut ai, W. Fisher ay, H.E. Fisk ay, I. Fleck w, M. Ford as, M. Fortner ba, H. Fox w, S. Fu ay,

S. Fuess ay, T. Gadfort ce, C.F. Galea ai, E. Gallas ay, E. Galyaev bd, C. Garcia bt, A. Garcia-Bellido ce,
J. Gardner bg, V. Gavrilov ak, A. Gay s, P. Gay m, D. Gelé s, R. Gelhaus aw, C.E. Gerber az,

Y. Gershtein ax, D. Gillberg e, G. Ginther bt, N. Gollub ao, B. Gómez h, K. Gounder ay, A. Goussiou bd,
P.D. Grannis bu, H. Greenlee ay, Z.D. Greenwood bi, E.M. Gregores d, G. Grenier t, Ph. Gris m,

J.-F. Grivaz p, S. Grünendahl ay, M.W. Grünewald ad, F. Guo bu, J. Guo bu, G. Gutierrez ay,
0370-2693/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2006.05.077

http://www.elsevier.com/locate/physletb
http://dx.doi.org/10.1016/j.physletb.2006.05.077


442 D∅ Collaboration / Physics Letters B 638 (2006) 441–449
P. Gutierrez bx, A. Haas bs, N.J. Hadley bj, P. Haefner y, S. Hagopian ax, J. Haley bq, I. Hall bx,
R.E. Hall av, L. Han g, K. Hanagaki ay, K. Harder bh, A. Harel bt, R. Harrington bl, J.M. Hauptman bf,

R. Hauser bn, J. Hays bb, T. Hebbeker u, D. Hedin ba, J.G. Hegeman ah, J.M. Heinmiller az,
A.P. Heinson aw, U. Heintz bk, C. Hensel bg, G. Hesketh bl, M.D. Hildreth bd, R. Hirosky cd,

J.D. Hobbs bu, B. Hoeneisen l, H. Hoeth z, M. Hohlfeld p, S.J. Hong ae, R. Hooper bz, P. Houben ah,
Y. Hu bu, Z. Hubacek j, V. Hynek i, I. Iashvili br, R. Illingworth ay, A.S. Ito ay, S. Jabeen bk, M. Jaffré p,
S. Jain bx, K. Jakobs w, C. Jarvis bj, A. Jenkins ar, R. Jesik ar, K. Johns at, C. Johnson bs, M. Johnson ay,

A. Jonckheere ay, P. Jonsson ar, A. Juste ay, D. Käfer u,∗, S. Kahn bv, E. Kajfasz o, A.M. Kalinin aj,
J.M. Kalk bi, J.R. Kalk bn, S. Kappler u, D. Karmanov al, J. Kasper bk, P. Kasper ay, I. Katsanos bs,

D. Kau ax, R. Kaur aa, R. Kehoe cb, S. Kermiche o, S. Kesisoglou bz, N. Khalatyan bk, A. Khanov by,
A. Kharchilava br, Y.M. Kharzheev aj, D. Khatidze bs, H. Kim ca, T.J. Kim ae, M.H. Kirby ai,

B. Klima ay, J.M. Kohli aa, J.-P. Konrath w, M. Kopal bx, V.M. Korablev am, J. Kotcher bv, B. Kothari bs,
A. Koubarovsky al, A.V. Kozelov am, J. Kozminski bn, A. Kryemadhi cd, S. Krzywdzinski ay, T. Kuhl x,

A. Kumar br, S. Kunori bj, A. Kupco k, T. Kurča t,1, J. Kvita i, S. Lager ao, S. Lammers bs,
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Abstract

A search for gaugino pair production with a trilepton signature in the framework of R-parity violating supersymmetry via the couplings λ121,
λ122, or λ133 is presented. The data, corresponding to an integrated luminosity of L≈ 360 pb−1, were collected from April 2002 to August 2004
with the D∅ detector at the Fermilab Tevatron Collider, at a center-of-mass energy of

√
s = 1.96 TeV. This analysis considers final states with

three charged leptons with the flavor combinations ee�, μμ�, and eeτ (� = e or μ). No evidence for supersymmetry is found and limits at the 95%
confidence level are set on the gaugino pair production cross section and lower bounds on the masses of the lightest neutralino and chargino are
derived in two supersymmetric models.
© 2006 Elsevier B.V. All rights reserved.

PACS: 11.30.Pb; 04.65.+e; 12.60.Jv

Keywords: Supersymmetry; Supergravity; Supersymmetric models
Supersymmetry (SUSY) [1] predicts the existence of a new
particle for each standard model (SM) particle, differing by half
a unit in spin but otherwise sharing the same quantum numbers.

* Corresponding author.
E-mail address: kaefer@physik.rwth-aachen.de (D. Käfer).

1 On leave from IEP SAS Kosice, Slovakia.
2 Visitor from Helsinki Institute of Physics, Helsinki, Finland.
The new scalar particles, known as squarks and sleptons, carry
baryon (B) or lepton (L) quantum numbers, potentially leading
to interactions violating B or L conservation. In the supersym-
metric Lagrangian, there is a continuous R-invariance, which
prevents lepton and baryon number violation, but also prevents
gluinos and gravitinos from being massive.

In a supergravity scenario, the gravitino will acquire mass
through the spontaneous breaking of local SUSY. The SUSY-

mailto:kaefer@physik.rwth-aachen.de
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breaking is then communicated to the so-called observable sec-
tor so that, in particular, the gluino acquires its mass [2]. This
breaks the continuous R-invariance, leaving only a discrete ver-
sion, which is called R-parity [3]. Each particle is characterized
by an R-parity quantum number defined as Rp = (−1)3B+L+2S

(S being the spin), such that SM particles have Rp = 1 and
SUSY particles Rp = −1. The gauge symmetry allows R-
parity violating (/Rp) terms to be included in the superpoten-
tial [4]. These terms are:

W/Rp = 1

2
λijkLiLj Ēk + λ′

ijkLiQj D̄k + μiLiHu

(1)+ 1

2
λ′′

ijkŪiD̄j D̄k,

where L and Q are the lepton and quark SU(2) doublet super-
fields, while Ē, Ū , and D̄ denote the weak isospin singlet fields
and the indices i, j , k refer to the fermion families. The cou-
pling strengths in the trilinear terms are given by the Yukawa
coupling constants λ, λ′ and λ′′. Terms appearing in the first
line of Eq. (1) violate lepton number by one unit, and the last
term in the second line leads to baryon number violation. The
bilinear term μiLiHu mixes lepton and Higgs (Hu) superfields.

This Letter reports on a search for chargino and neutralino
pair production under the hypothesis that /Rp can only occur via
a term of the type λijkLiLj Ēk . A non-zero /Rp coupling λijk

thus enables a slepton to decay into a lepton pair, as shown in
Fig. 1 for the /Rp-decay of the lightest neutralino. The so-called
LLĒ couplings λijk specifically studied here, are λ121, λ122,
and λ133. One coupling is assumed to be dominant at a time,
with any other /Rp-coupling negligibly small.

The initial state at the Fermilab Tevatron Collider consists
of hadrons, so the production of a single SUSY particle could
only occur through a trilinear term including at least one baryon
field, i.e. via λ′ or λ′′ terms. Consequently, since only the LLĒ

term (λ) is considered here, SUSY particles are produced pair-
wise in an R-parity conserving process [5], with /Rp manifesting
itself in the decay only. Even though direct decays of heavy
gauginos (χ̃0

2,3,4, χ̃±
2 ) are possible, they predominantly cascade

decay into the lightest supersymmetric particle (LSP), which in
turn decays into SM particles via /Rp . In all scenarios studied
here, the lightest neutralino (χ̃0

1 ) is assumed to be the LSP.
Two SUSY models are investigated. In the minimal super-

gravity model (mSUGRA) [6], the universal soft breaking mass

Fig. 1. Two examples of /Rp -decays of the lightest neutralino via LLĒ cou-
plings λ1jk . In each decay, two charged leptons and one neutrino are produced.
parameter for all scalars at the unification scale, m0, is set to
100 GeV or 1 TeV. At low m0, the stau can be lighter than the
second lightest neutralino (χ̃0

2 ) and the lightest chargino (χ̃±
1 ),

leading to a larger number of final states with taus. By contrast,
a high value of m0 prevents complex cascade decays involving
sleptons. The universal trilinear coupling, A0, has only a small
influence on the gaugino pair production cross section and is
set to zero as in the previous Run I analysis [7]. Searches for
supersymmetric Higgs bosons at LEP [8] imply that tanβ � 2
is excluded, where tanβ is the ratio of the vacuum expectation
values of the two neutral Higgs fields. Since the cross section
for gaugino pair production increases with increasing tanβ due
to decreasing masses, a value of tanβ = 5 (close to the LEP
limit) is chosen to ensure conservative results. A higher value
of tanβ = 20 is studied exclusively in the eeτ analysis, because
the stau mass decreases with increasing tanβ , leading to an en-
hanced signal efficiency for this particular analysis. Both signs
of the higgsino mixing mass parameter, μ, are considered and
the common gaugino mass, m1/2, is varied.

In the specific minimal supersymmetric standard model
(MSSM) [9] considered here, heavy squarks and sleptons
(1 TeV) are assumed, while the GUT relation between M1 and
M2, the masses of the superpartners of the U(1)Y and SU(2)L
gauge bosons, is relaxed. The value of tanβ is set to 5, and M1
and M2 are varied independently. The higgsino mixing mass
parameter μ is set to 1 TeV, so that χ̃0

3 , χ̃0
4 , and χ̃±

2 are heavy.
Within the domain of the SUSY parameters explored in this

analysis, pair production of χ̃±
1 χ̃∓

1 and χ̃0
2 χ̃±

1 are the domi-
nant processes, leading to final states with at least four charged
leptons and two neutrinos. They come from either the decay
of the χ̃0

1 , with the lepton flavors depending on λijk , or from
cascade decays of χ̃±

1 and χ̃0
2 . The strengths of the couplings

are set to 0.01 (λ121 and λ122) and 0.003 (λ133). These values
are well below the current limits of λ121 < 0.5, λ122 < 0.085,
and λ133 < 0.005 for a slepton mass of 1 TeV, which have
been derived from the upper limits λ121 < 0.05, λ122 < 0.027,
and λ133 < 0.0016 obtained for a slepton mass of 100 GeV in
Refs. [4,10]. Additionally, only neutralinos with a decay length
of less than 1 cm are considered, which results in a cut-off at
low neutralino masses [11], i.e. 30 GeV for λ121 and λ122, and
50 GeV for λ133, again for slepton masses of 1 TeV. As the χ̃0

1
can be light, the leptons can have small transverse (w.r.t. the
beam axis) momentum and thus be difficult to detect. For this
reason, only three charged leptons with the flavor combinations
ee�, μμ�, or eeτ (� = e or μ) are required.

The analysis is based on a dataset recorded with the D∅
detector between April 2002 and August 2004, corresponding
to an integrated luminosity of L = 360 ± 23 pb−1. Previous
searches with the hypothesis of a LLĒ coupling have been
performed by the D∅ Collaboration with Tevatron Run I data
collected at a center-of-mass energy

√
s = 1.8 TeV [7].

The D∅ detector consists of a central tracking system sur-
rounded by a uranium/liquid-argon sampling calorimeter and
a system of muon detectors [12]. Charged particles are recon-
structed using multiple layers of silicon detectors, as well as
eight double layers of scintillating fibers in the 2 T axial mag-
netic field of a superconducting solenoid. The D∅ calorime-
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ter provides hermetic coverage up to pseudorapidities |η| =
|− ln[tan(θ/2)]| ≈ 4 in a semi-projective tower geometry with
longitudinal segmentation. The polar angle θ is measured from
the geometric center of the detector with respect to the proton-
beam direction. The muon system covers |η| < 2 and consists
of a layer of tracking detectors and scintillation trigger coun-
ters in front of 1.8 T toroidal magnets, followed by two more
similar layers of detectors outside the toroids [13].

Events containing electrons or muons are selected for off-
line analysis by a real-time three-stage trigger system. A set
of single and dilepton triggers is used to tag the presence of
electrons or muons based on their characteristic energy deposits
in the calorimeter, the presence of high-momentum tracks in the
tracking system, and hits in the muon detectors.

R-parity violating supersymmetry events are modeled using
SUSYGEN [14], with CTEQ5L [15] parton distribution func-
tions (PDFs). The package SUSYGEN is interfaced with the
program SUSPECT [16] for the evolution of masses and cou-
plings from the renormalization group equations. Leading order
(LO) cross sections of signal processes, obtained with SUSY-
GEN, are multiplied by a K factor computed with GAUGI-
NOS [17]. Standard model processes are generated using the
Monte Carlo (MC) generator PYTHIA [18]. All MC events are
processed through a detailed simulation of the detector geome-
try and response based on GEANT3 [19]. Multiple interactions
per crossing as well as detector pile-up are included in the sim-
ulations. The SM background predictions are normalized us-
ing cross-section calculations at next-to-leading order (NLO)
and next-to-NLO (for Drell–Yan production) with CTEQ6.1M
PDFs [20]. Background from multijet production is estimated
from data similar to the search samples, however, the lepton
identification and isolation criteria are inverted (ee� and eeτ )
or loosened (μμ�). These samples are scaled at an early stage
of the analysis where multijet production still dominates.

Electrons are identified based on their characteristic en-
ergy deposition in the calorimeter [21]. The fraction of en-
ergy deposited in the electromagnetic part of the calorime-
ter and the transverse shower profile inside a cone of radius
	R= √

(	η)2 + (	ϕ)2 = 0.4 around the cluster direction are
considered (where ϕ is the azimuthal angle). In addition, a track
must point to the energy deposition in the calorimeter and its
momentum and the calorimeter energy must be consistent with
each other. Remaining backgrounds from jets are suppressed
based on the track multiplicity within 	R = 0.4 around the
track direction.

Muons are reconstructed using track segments in the muon
system, and each muon is required to have a matched central
track measured with the tracking detectors [21]. Furthermore,
muons are required to be isolated in both the tracking detec-
tors and the calorimeter, which is essential for rejecting muons
associated with heavy-flavor jets. The sum of the track trans-
verse momenta (pT ) inside a cone of 	R = 0.5 around the
muon direction should be less than 2.5 GeV and less than 6% of
the muon pT . For the calorimeter isolation, a transverse energy
(ET ) of less than 2.5 GeV in a hollow cone of 0.1 < 	R< 0.4
around the muon direction is required and less than 8% of the
muon’s transverse energy should be deposited in the calorime-
ter inside this hollow cone. For both isolation criteria, the pT

(ET ) of the muon track itself is excluded from the sum.
Electrons and muons are required to be isolated from

each other (	Reμ > 0.2), among themselves (	Ree > 0.4,
	Rμμ > 0.2), and from hadronic jets (	R�j > 0.5).

Taus decaying hadronically (τhad) are detected as narrow,
isolated jets with a specific ratio of electromagnetic to hadronic
energy. Two neural networks (NN) are used to identify one-
prong tau decays according to the calorimeter information:
either with no subclusters in the electromagnetic section of
the calorimeter (π -like) or with EM subclusters (ρ-like) [22].
Muons misidentified as taus are removed by taking the shower
shape of the hadronic cluster into account.

Jets are defined using an iterative seed-based cone algorithm
[23], clustering calorimeter energy within 	R = 0.5. The jet
energy calibration is determined from the transverse momen-
tum balance in photon plus jet events. Missing transverse en-
ergy (/ET ) is calculated as the negative vector sum of energy
deposits in the calorimeter cells, taking into account energy cor-
rections for reconstructed electrons, muons, and jets.

Electron, muon, and tau reconstruction efficiencies and res-
olutions are determined using measured Z boson decays. They
are parametrized as functions of pT , η, and φ and applied to the
simulated MC events. The electron and muon trigger efficien-
cies are measured in data and translate to signal event trigger
efficiencies close to 100% for ee� and eeτ , and around 94% for
μμ�.

To achieve the best sensitivity for each /Rp-coupling, three
different analyses are used depending on the flavors of the lep-
tons in the final state: ee�, μμ�, and eeτ (� = e or μ). The
criteria are summarized in Table 1. Each analysis requires three
identified leptons with minimum transverse momenta p�i

T . In
the ee� and eeτ analyses, the same lepton quality criteria are
applied to each lepton, independent of its transverse momen-
tum. The μμ� analysis, however, uses looser quality criteria
for the lowest-pT lepton to increase the selection efficiency.
Dielectron and dimuon backgrounds from Drell–Yan, Υ , and
Z boson production are suppressed using cuts on /ET and on
the invariant dilepton mass M�� (for the μμ� and eeτ analy-
ses). All three analyses are optimized separately using SM and
signal MC simulations.

Cuts I and II of the ee� analysis (Table 1) are used to select
a dielectron control sample for data and MC comparison, while
cuts III and IV define the trilepton ee� analysis. Cut III requires
three leptons to be identified, two of which must be electrons.
Cut IV, the photon conversion veto, which requires that a track
associated with an electron has hits in the innermost layers of
the silicon detector, is extended to all identified electrons in an
event. Contrary to this, cut II only applies to the two electrons
of the control sample. In the μμ� and eeτ analyses all cuts
presented in Table 1 serve as selection cuts for the respective
trilepton sample and are applied successively to all MC sam-
ples and the data. Two-dimensional cuts in the (/ET , Mμμ) and
(	ϕ(μμ), /ET ) planes are defined in the μμ� analysis to veto
events from Υ and Z boson production. In the eeτ analysis,
hadronic tau decays are identified by requiring the transverse
energy deposited in a calorimeter cone of radius 	R = 0.5 to
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Table 1
Summary of the selection criteria for ee�, μμ�, and eeτ analyses and num-
bers of events observed in data and expected from SM background, including
statistical and systematic uncertainties

ee� (� = e or μ) analysis

Cut Data Background

I pe1
T

> 20 GeV, pe2
T

> 20 GeV 20170 20534 ± 55 ± 1484
II γ -conversion veto (lead. 2 e)

and /ET > 15 GeV 1247 1241 ± 21 ± 668
III p�1

T
> 20 GeV, p�2

T
> 20 GeV

p�3
T

> 10 GeV, at least 2 e 5 5.5+0.8
−0.5 ± 0.6

IV γ -conversion veto (all e)
and /ET > 15 GeV 0 0.9+0.4

−0.1 ± 0.1

μμ� (� = μ or e) analysis

Cut Data Background

I p�1
T

> 12 GeV, p�2
T

> 8 GeV 19283 19588 ± 81 ± 3332
II 	ϕ(μi,/ET ) > 0.1 14918 15275 ± 72 ± 2598
III Υ and Z veto (/ET , Mμμ) plane

	ϕ(μμ) < 2.53 for /ET < 44 GeV 564 506 ± 13 ± 86

IV p
μ3
T

> 4 GeV or pe
T

> 5 GeV
	ϕ(e,/ET ) > 0.1∑

p�i
T

> 50 GeV 0 0.4 ± 0.1 ± 0.1

eeτ analysis

Cut Data Background

I pe1
T

> 10 GeV, pe2
T

> 10 GeV
Mee > 18 GeV 20437 20905 ± 70 ± 1555

II Mee < 80 GeV 2831 2531 ± 32 ± 329
III τ : ET > 10 GeV, NN > 0.9 16 11.0 ± 2.8 ± 2.0
IV /ET /

√
ST > 1.5 GeV1/2 0 1.3 ± 1.7 ± 0.5

be above 10 GeV and an NN output of more than NN > 0.9,
corresponding to cut III in Table 1. To select events with real
/ET , which is expected due to neutrinos in the final state, a cut
on /ET /

√
ST is applied, where ST is the total scalar transverse

energy. It allows discrimination against events with fake /ET ,
which may arise through statistical fluctuations in jet energy
measurements.

Fig. 2 shows (a) the dielectron invariant mass in the ee�

analysis after cut I of Table 1, (b) the missing transverse en-
ergy distribution in the μμ� analysis after cut III of Table 1,
and (c) the neural network output for a loose Z → ττ → τhadμ

selection, which is used as an identification criterion for taus in
the eeτ analysis. The μ + jet opposite-sign data sample (OS)
represents the control sample, while the μ + jet like-sign data
sample (LS) is used to model the multijet background. The dif-
ferent contributions are scaled to the control sample by fitting
the ET spectrum of the tau candidate. While in (a), (b) the sig-
nal is scaled by a factor of 50, an arbitrary scale is used in (c),
since the search and control samples are completely indepen-
dent of each other and no meaningful scale can be defined for
the signal contribution w.r.t. Z → ττ or μ + jet data.

The number of observed events in data and the expected
background from SM processes with its respective statistical
and systematic uncertainties are given in Table 1. The back-
ground composition at the final stage of the ee� and μμ� analy-
ses is similar. Diboson production constitutes the largest back-
ground fraction (ee�: 86%, μμ�: 61%), followed by multijet
(a)

(b)

(c)

Fig. 2. (a) The dielectron invariant mass distribution of the ee� analysis af-
ter cut I, Table 1; (b) the /ET distribution of the μμ� analysis after cut III,
Table 1; and (c) the combination of the π and ρ-like NN outputs of a loose
Z → ττ → τhadμ selection used as the τ identification criterion in the eeτ

analysis. In (c) like-sign (opposite-sign) μ + jet data is abbreviated LS (OS)
and signal refers to the mSUGRA point m0 = 1 TeV, tanβ = 5, μ > 0, A0 = 0,
and m1/2 = 280 GeV, scaled by a factor of 50 in (a), (b) and arbitrarily in (c),
details in the text.

(ee�: 11%), or t t̄ production (μμ�: 36%). In case of the eeτ

analysis, the main background is Z/γ ∗ → ee (44%). Events
from diboson, multijet and Z/γ ∗ → ττ contribute 20%, 16%
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and 14%, respectively. The number of events observed in data
is in good agreement with the expectation from SM processes
at all stages of the three analyses.

The numbers of events expected from SM background and
from signal depend on several quantities, each one introducing a
systematic uncertainty. The relative uncertainty due to the lumi-
nosity measurement is 6.5%. The relative uncertainty on trigger
efficiencies ranges from about 11% for Drell–Yan (DY) back-
ground with low dilepton invariant masses (15 GeV < M�� <

60 GeV) to about 1% for the signal. Lepton identification and
reconstruction efficiencies give 3% (e), 4% (μ), and 12% (τ )
per lepton candidate, and the photon conversion veto adds an-
other 0.4%. The relative systematic uncertainties due to the
resolution of the electron or muon energies and /ET are esti-
mated by varying the resolutions in the MC simulation and are
found to be less than 1% (e), 1.5% (μ), and 2% (/ET ).

Further systematic uncertainties on the experimental cross-
section limits concern the theoretical uncertainties on SM back-
ground MC cross sections, ranging from 3% to 17%, depending
on the process, and including PDF uncertainties. Since PYTHIA

does not model the Z boson pT accurately, a relative uncer-
tainty of 3% to 15%, depending on the dilepton mass, is added
for MC Drell–Yan events. The influence of PDF uncertainties
on the signal acceptance is estimated to be 4%.

Theoretical uncertainties on the signal cross sections are due
to variations of the renormalization and factorization scales
(5%), the LO cross section (2%), the K factor (3%), and the
choice of PDF (9%). As gaugino pair production mostly pro-
ceeds via s-channel exchange of virtual γ , W , or Z bosons,
the latter uncertainty is deduced from studies of the DY cross
section at similar masses. The uncertainty on the DY cross sec-
tion due to the choice of PDF is estimated to be 6%, using
the CTEQ6.1M uncertainty function set [20]. An additional 3%
is added linearly to account for the lower DY cross section if
calculated with CTEQ6 PDFs, compared to its estimation with
CTEQ5 PDFs, which are used for the signal MC generation. An
additional, conservative, systematic uncertainty of +10/−0%
is added to account for the lower LO cross section from SUSY-
GEN compared to the one obtained with PYTHIA. All of these
uncertainties are assumed to be independent, and are added
in quadrature. The total systematic uncertainty of −11% and
+15% is represented by the grey-shaded bands of the signal
cross-section curve in Fig. 3.

When setting limits, the ee�, μμ�, and eeτ analyses are
combined for each coupling (λ121, λ122, λ133) in order to en-
hance the signal sensitivity. All signal and background sam-
ples, as well as the data are processed by all analyses accord-
ing to the three channels. Events selected in multiple channels
are assigned only to the analysis with the largest signal-to-
background ratio, and are removed from all other analyses.
The percentage of common signal events for any two analy-
ses is less than 13%, while no common data or SM background
events are found. Table 2 shows the efficiencies of the analyses
for a typical mSUGRA point (m0 = 1 TeV, tanβ = 5, μ > 0,
A0 = 0, and m1/2 = 280 GeV). Correlations between the signal
efficiencies in the three channels are taken into account in the
calculation of the systematic uncertainties.
Fig. 3. mSUGRA (m0 = 1 TeV, tanβ = 5, μ > 0, A0 = 0): The σNLO cross
section and the σ95% C.L. limits for the λ121, λ122, and λ133 analyses as func-
tions of the χ̃0

1 mass (lower horizontal axis) and the χ̃±
1 mass (upper horizontal

axis). The exclusion domains, indicated by the hatched regions, lie above the
respective observed limit curve.

Table 2
Efficiencies (in %) of the ee�, μμ�, and eeτ analyses and of the combined
analyses for a typical mSUGRA point (m0 = 1 TeV, tanβ = 5, μ > 0, A0 = 0,
and m1/2 = 280 GeV). The first uncertainty is statistical and the second one
systematic

Analysis λ121 λ122 λ133

ε (ee�) 18.9±0.3±1.2 4.5±0.2 ± 0.3 2.6±0.2±0.1
ε (μμ�) 2.1±0.1±0.3 16.1±0.1 ± 1.9 0.8±0.1±0.1
ε (eeτ ) 1.1±0.1±0.1 0.23±0.04 ± 0.03 2.0±0.2±0.2

εcomb 22.1±0.3±1.6 20.8±0.2 ± 2.2 5.4±0.3±0.4

Since no evidence for gaugino pair production is observed,
upper limits on the cross sections are extracted in two models:
in mSUGRA (with m0 = 100 GeV or 1 TeV, tanβ = 5 or 20,
μ > 0, and A0 = 0) and in an MSSM model assuming no GUT
relation between M1 and M2 and assuming heavy squarks and
sleptons, i.e. the higgsino mixing mass parameter, μ, and all
sfermion masses are set to 1 TeV. Limits are calculated at the
95% C.L. using the LEP CLS method [24] taking into account
correlated uncertainties between SM and signal processes.

For mSUGRA (m0 = 1 TeV and tanβ = 5), the expected
and observed cross-section limits (σ95% C.L.) are shown in
Fig. 3 as functions of the χ̃0

1 and χ̃±
1 masses.

Studies for m0 = 100 GeV and tanβ = 5 and 20 are done for
λ133. Particularly interesting is the region of high tanβ values,
where the stau is the next-to-lightest supersymmetric particle.
In such a case, decays of SUSY particles into final states with
stau leptons can be dominant and consequently increase the ef-
ficiency of the eeτ channel. Lower bounds on the masses of the
χ̃0

1 and the χ̃±
1 are given in Table 3.

In the MSSM, the exclusion domain is presented in the (χ̃0
1 ,

χ̃±
1 ) mass plane in Fig. 4. The cut-off of the exclusion domain

towards low neutralino masses, i.e. at mχ̃0
1

= 30 GeV for λ121

and λ122, and at mχ̃0
1

= 50 GeV for λ133, is due to the combined
effect of the mean decay length of the lightest neutralino (cho-
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Table 3
The combined lower limits at the 95% C.L. on the masses of χ̃0

1 and χ̃±
1 (in

GeV) obtained using the mSUGRA model with different parameters

Coupling sign(μ) m(χ̃0
1 ) m(χ̃±

1 )

λ121 (m0 = 1 TeV, tanβ = 5) > 0 119 231
λ122 > 0 118 229
λ133 > 0 86 166

λ121 (m0 = 1 TeV, tanβ = 5) < 0 117 234
λ122 < 0 115 230

λ133 (m0 = 100 GeV, tanβ = 5) > 0 105 195
λ133 (m0 = 100 GeV, tanβ = 20) > 0 115 217

Fig. 4. Observed and expected exclusion domains at the 95% C.L. in the (χ̃0
1 ,

χ̃±
1 ) mass plane of the considered MSSM model for the λ121, λ122, and λ133

couplings with their strengths set to 0.01 (λ121, λ122) and 0.003 (λ133).

sen to lie below one cm) and the values of the λ121, λ122, and
λ133 couplings.

In summary, no evidence for /Rp-SUSY is observed in trilep-
ton events. Upper limits on the chargino and neutralino pair
production cross section are set in the case of one dominant
coupling: λ121, λ122, or λ133. Lower bounds on the masses of
the lightest neutralino and the lightest chargino are derived in
mSUGRA and in an MSSM scenario with heavy sfermions, but
assuming no GUT relation between M1 and M2. All limits sig-
nificantly improve previous results obtained at LEP [4] and with
the D∅ Run I dataset [7] and are the most restrictive to date.
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